Preparation for the Final.

Below you can find a list of definitions, axioms (well, an axiom), theorems and (counter-)examples that you need to know for the Final. More precisely, for in-class part of the Final, you will be given several (tentatively, ten to twenty) items from this list to formulate. Note that it won't have to be word-by-word citation, but whatever you write will need to be (a) correct (as in not a false statement), (b) easily equivalent to the textbook/lectures version.

On in-class part of the Final, you will not be asked to provide any proofs.

Knowledge of proofs of statements on this list is required for the take-home part of the Final.

	In th	ne list below,			
	marks definitions;				
	☐ marks theorems and statements;				
\triangleright	mark	es (counter-)examples that you need to know off-hand.			
	Note	that there may be corrections to this list until Thursday, Dec 4.			
	Preliminaries.				
	\odot	Sets, set-theoretic operations, functions, inverse function, composition.			
	\odot	Injections, surjections, bijections.			
	\odot	Finite, infinite sets. Denumerable (countably infinite), countable, uncountable sets.			
		Countability of \mathbb{Z} , \mathbb{Z}^2 , \mathbb{Z}^n , \mathbb{Q} .			
		Cantor's Theorem. Uncountability of \mathbb{R} .			
	Pro	perties of \mathbb{R} .			
	\odot	Bounded, bounded above, bounded below subsets of \mathbb{R} .			
	\odot	Upper bound, lower bound of a subset of \mathbb{R} .			
	\odot	Least upper bound (= exact upper bound = supremum) of a subset of $\mathbb R$			
	\odot	Greatest lower bound (= exact lower bound = infimum) of a subset of \mathbb{R} .			
	\odot	Completeness property of \mathbb{R} (= supremum property of \mathbb{R}).			
		Archimedean property of \mathbb{R} .			
		Nested intervals property.			
		The density theorem.			
	Lim	its of Sequences.			
	\odot	Sequence of real numbers (= sequence in \mathbb{R}).			
	\odot	Limit of a sequence in \mathbb{R} , convergent/divergent sequence.			
		Uniqueness of limit of a sequence.			
	\odot	Tail of a sequence.			
	\odot	Bounded sequence.			
		1			

	Boundedness of a convergent sequence.
\triangleright]	Bounded but divergent sequence.
	Arithmetic properties of limits of sequences (Theorem 3.2.3).
\triangleright]	Divergent sequences A, B such that $A + B$ converges.
	Order properties of limits of sequences (Theorems 3.2.4, 3.2.5).
\triangleright 3	Sequence (a_n) with $a_n > 0$ for all $n \in \mathbb{N}$, but $\lim_{n \to \infty} (a_n) = 0$.
	Squeeze theorem for sequences.
	Increasing, strictly increasing, decreasing, strictly decreasing, monotone sequence.
	Monotone convergence theorem.
⊙]	Euler's number e .
	Square root as a limit of a sequence.
· :	Subsequence of a sequence.
	Bolzano–Weierstrass theorem.
\odot (Cauchy sequence.
	Cauchy criterion.
	Sequence that tends to $+\infty$, sequence that tends to $-\infty$, properly divergent sequence.
· :	Sum of a series. Correspondence between infinite series and sequences.
	<i>n</i> -th term test.
Limi	its of Functions.
·	Cluster point of a subset of \mathbb{R} .
⊙]	Limit of a function.
	Uniqueness of limit of a function.
	Sequential criterion for limit of a function.
⊙]	Function bounded a neighborhood.
	Local boundedness of a function that has a limit.
\triangleright]	Bounded function that does not have a limit at 0.
	Arithmetic properties of limits of functions (Theorem 4.2.4).
\triangleright]	Functions f, g that don't have a limit at some point $c \in \mathbb{R}$, but $f + g$ does.
	Order properties of limits of functions (Theorem 4.2.6).
	Functions f, g such that for all x in their domain, $f > g$, but at some point c , $\lim_{x \to c} f = \lim_{x \to c} g$.
	Squeeze theorem for limits of functions.
	Local separation from zero (Theorem 4.2.9).
	Infinite limit of a function, limit of a function at infinity, infinite limit of a function at infinity.

 \odot One-sided limits.

Continuous Functions.

\odot	Function, continuous at a point. Function, discontinuous at a point.		
	Criterion for continuity in terms of neighborhoods (Theorem 5.1.2).		
	Sequential criterion for continuity.		
	Sequential criterion for discontinuity.		
\odot	Function, continuous on a subset of \mathbb{R} .		
\triangleright	Function, discontinuous everywhere (for example, Dirichlet's function).		
\triangleright	Function, continuous at irrational numbers and discontinuous at rational numbers (for example, Thomae's function).		
	Arithmetic properties of continuous functions (Theorem $5.2.1$).		
\triangleright	Functions f, g discontinuous at 0 such that $f + g$ is continuous at 0.		
	Composition of continuous functions (at a point and on a set).		
	Boundedness Theorem.		
\triangleright	Bounded but discontinuous (at least at one point) function.		
\triangleright	Function continuous but unbounded on an open interval.		
•	Absolute (= global) maximum of a function on a set, point of absolute maximum. Absolute minimum of a function on a set, point of absolute minimum.		
	Maximum-Minimum Theorem.		
\triangleright	Function f continuous on an open interval such that that f does not have maximum or minimum value.		
	Location of roots theorem, Bolzano's intermediate value theorem.		
	Preservation of closed intervals. Preservation of intervals.		
\odot	Function, uniformly continuous on a subset of \mathbb{R} .		
	Nonuniform continuity criterion.		
	Uniform continuity theorem.		
\triangleright	Function, continuous but not uniformly continuous on an open interval.		
\odot	Increasing, strictly increasing, decreasing, strictly decreasing, monotone functions. $$		
\odot	Jump of a monotone function.		
	Continuity criterion of monotone functions (Theorem 5.6.3).		
	Continuous inverse theorem.		
Differentiation.			
\odot	Derivative of a function at a point. Function, differentiable at a point. (Three definitions.)		
	Continuity of a differentiable function.		
\triangleright	Function, continuous but not differentiable at $x = 0$.		

\triangleright	Function, differentiable on \mathbb{R} , whose derivative is not continuous at 0.
	Arithmetic properties of derivative.
	Chain rule.
	Derivative of inverse function (inverse function theorem).
	Interior extremum theorem.
	Rolle's theorem.
	Mean value theorem.
	First derivative test for extrema (Theorem 6.2.8).
	Criterion for a differentiable function to be increasing/decreasing/constant on an interval (Theorems 6.2.5, 6.2.7).
\odot	nth Taylor polynomial of a function.
	Taylor's theorem.
	nth derivative test for extrema (Theorem 6.4.4).
	nth Taylor's polynomial at zero for $(1+x)^{\alpha}$, e^x , $\ln x$, $\sin x$, $\cos x$.
	Newton's Method for approximating zeros. Recursively defined sequence converging to $\sqrt{2}$.
The	e Riemann Integral.
\odot	Partition, tagged partition, Riemann sum.
\odot	Riemann integrable function, Riemann integral.
\triangleright	Bounded but not a Riemann integrable function.
	Arithmetic and order properties of Riemann integral (linearity and monotonicity).
	Boundedness theorem for Riemann integrable function.
	Riemann integrability of a continuous function, monotone function (proof not required).
	Interval additivity theorem (proof not required).
	The fundamental theorem of calculus (first form).
•	Indefinite integral, antiderivative.
	The fundamental theorem of calculus (second form).
	Derivative of an indefinite integral of a continuous function.
	Substitution theorem. (If covered on $12/04$.)
	Definition of logarithmic and exponential functions. (If covered on $12/04$.)